CUTANEOUS T-CELL LYMPHOMA: SYSTEMIC THERAPY

Anne W. Beaven, MD
Associate Professor
Director, Lymphoma Program
University of North Carolina
<table>
<thead>
<tr>
<th>CTCL</th>
<th>Extranodal</th>
<th>Nodal</th>
<th>Leukemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosis fungoides</td>
<td>Extranodal NK/T cell lymphoma, nasal type</td>
<td>Peripheral T-cell lymphoma, NOS</td>
<td>Adult T-cell leukemia/lymphoma</td>
</tr>
<tr>
<td>Sezary Syndrome</td>
<td>Enteropathy-associated T-cell lymphoma</td>
<td>Angioimmunoblastic T-cell lymphoma</td>
<td>T-cell prolymphocytic leukemia</td>
</tr>
<tr>
<td>Subcutaneous panniculitis-like TCL</td>
<td>Hepatosplenic T-cell lymphoma</td>
<td>Follicular T-cell lymphoma*</td>
<td>T-cell large granular lymphocytic leukemia</td>
</tr>
<tr>
<td>CD30+ T-cell LPDs (LyP, pcALCL)</td>
<td>Monomorphic epitheliotropic intestinal TCL*</td>
<td>Nodal T-cell lymphoma with TFH phenotype*</td>
<td>Aggressive NK-cell leukemia</td>
</tr>
<tr>
<td>PC γδ T-cell lymphoma</td>
<td>Indolent T-cell LPD of the GI tract*</td>
<td>Anaplastic large-cell lymphoma, ALK-pos</td>
<td>Chronic LPD of NK cells</td>
</tr>
<tr>
<td>PC CD8+ epidermotropic cytotoxic TCL</td>
<td>Breast implant-associated ALCL*</td>
<td>Anaplastic large-cell lymphoma, ALK-neg*</td>
<td></td>
</tr>
<tr>
<td>PC acral CD8+ TCL*</td>
<td>Systemic EBV+ TCL of childhood*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC CD4+ small/medium T-cell LPD*</td>
<td>Hydroa Vacciniforme-like LPD*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CTCL PRIMARY TREATMENT MAP

IA limited patch, plaque
IB, IIA generalized patch, plaque
IIB tumors
III erythroderma
IVA, IVB nodal/visceral involvement

Topical corticosteroids
Bexarotene gel
Nitrogen mustard
UVB
PUVA
PUVA + IFN/other
Oral bexarotene
Electron beam
Vorinostat and romidepsin
Denileukin diftitox
Chemotherapy
Experimental therapy CLINICAL TRIALS

Mycosis Fungoides and Sezary Syndrome are **chronic illnesses**

- Long term treatment required
 - Combination of approaches w/ topical and systemic and radiation therapy
 - Treatments sometimes re-used over the years
 - Chemotherapy only used in advanced stage disease – usually monotherapy
 - Multidisciplinary approach: Dermatology, oncology, radiation oncology, pathologists, wound care

- Complete remission unlikely
 - Minor or partial response not considered failure
 - Aim for durability and low toxicity

- Supportive care – consider antibiotics for prophylaxis of skin infections
“The aim of treatment in relapsed/refractory CTCL is to safely induce prolonged remission without compromising a patient’s immunity or adversely affecting their quality of life.”

WHEN DO WE USE SYSTEMIC THERAPIES IN MF?

- Early stage MF (I/IIA), refractory to skin-directed therapies
- Significant folliculotropic disease, large cell transformation
- Advanced stage MF/SS, IIB-IV – systemic therapy used upfront

Systemic therapy +/- skin directed therapy

Used with permission from Alison Moskowitz, MD
WHAT ARE THE SYSTEMIC THERAPIES?
CLASSIC CHEMOTHERAPY DRUGS

• **Gemcitabine**

 • Schedule: IV weekly for 3 of every 4 weeks

 • Response (based on skin response):
 • Overall response rate of 68%
 • Complete response 12%

 • Most frequent side effects:

 • A decrease in blood counts, especially platelets
 • Abnormal liver results on blood tests
 • Fatigue

• **Liposomal doxorubicin**

 • Schedule: IV every other week for up to 6 months

 • Response (based on skin response):
 • Overall response rate of 41-84%
 • Complete response rate of 6-42%

 • Notable side effects:
 • Rash
 • Cardiac (heart) toxicity

HISTONE DEACYLASE INHIBITORS

FDA APPROVED FOR CTCL

<table>
<thead>
<tr>
<th></th>
<th>ORR, %</th>
<th>CR Rate, %</th>
<th>Median TTFR, mo</th>
<th>Median DOR, mo</th>
<th>Median TTP, mo</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorinostat Study 1 (N=74)⁸</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>5.6</td>
<td>5</td>
<td>Thromboembolism, thrombocytopenia, anemia, nausea, vomiting, diarrhea (may require electrolyte replacement), fatigue</td>
</tr>
<tr>
<td>Vorinostat Study 2 (N=33)¹³</td>
<td>24</td>
<td>0</td>
<td>3</td>
<td>3.5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Romidepsin Study 1 (N=96)¹⁰,¹¹</td>
<td>34</td>
<td>6</td>
<td>2</td>
<td>15</td>
<td>Not reported</td>
<td>Neutropenia, thrombocytopenia, anemia, nausea, fatigue, T-wave changes, QT prolongation requiring electrolyte monitoring</td>
</tr>
<tr>
<td>Romidepsin Study 2 (N=71)¹²</td>
<td>35</td>
<td>6</td>
<td>2</td>
<td>13.7</td>
<td>15.1</td>
<td></td>
</tr>
</tbody>
</table>

ORR: Overall response rate
CR: Complete response rate
TTFR: Time to First Response
DOR: Duration of response
PRALATREXATE
ANTINEOPLASTIC FOLATE THAT PREVENTS DNA SYNTHESIS AND CAUSES CELL DEATH

• Patients (n=54):
 • Median of 4 prior systemic therapies
 • ≥ stage Ib
• Schedule: IV weekly for three of every 4 weeks
• Response:
 • Overall response rate: 41% (mostly partial responses)
 • Median time to best response 57 days
• Most frequent side effects:
 • Sores in mouth 56% (severe 17%)
 • All patients will get vitamin B12 and folic acid supplements to decrease risk
 • Fatigue 41%
 • Mild nausea 39%

IMMUNOTHERAPY FOR CTCL

Picture from https://myepqlog.wordpress.com/2017/01/20/what-is-immunotherapy/ accessed on 10/3/18
ALEMTUZUMAB

• Monoclonal Antibody against CD52
 • CD52 is expressed on B and T cells
• Schedule:
 • Monday, Wednesday and Friday for up to 3 months
 • IV or as a shot
• Outcomes:
 • Overall response rates of 38-100% - most reports are around 80%
 • Complete response rates 21-100%
 • Duration of response: 6-12 months – some long term responders
• Mostly used in sezary syndrome
• Adverse Events: infections so patients maintained on anti-infectious medications

Brentuximab vedotin (SGN-35) ADC

- Monomethyl auristatin E (MMAE), potent antimicrotubule agent
- Protease-cleavable linker
- Anti-CD30 MoAb

1. ADC binds to CD30
2. ADC-CD30 complex traffics to lysosome
3. MMAE is released
4. MMAE disrupts microtubule network
5. G2/M cell cycle arrest
6. Apoptosis

Used with permission from Frederick Lansigan, MD
ALCANZA Phase III study

Eligibility
- CD30+ cutaneous lymphoma
- MF made up 75% of patients
- 131 patients were enrolled

Primary endpoint
- ORR4 = rate of objective response lasting ≥4 months
- Global response of all compartments using consensus criteria (mSWAT for skin evaluation, radiographic assessment, and circulating Sézary cell assessment as appropriate)

Brentuximab vedotin: 1.8 mg/kg IV, every 3 weeks

VS

Methotrexate: 5–50 mg
Or
Bexarotene: 300 mg/m²

Used with permission from Alison Moskowitz, MD
ALCANZA PHASE III STUDY RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Brentuximab Vedotin</th>
<th>MTX or Bexarotene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate</td>
<td>67%</td>
<td>20%</td>
</tr>
<tr>
<td>Response lasting ≥4 months all patients</td>
<td>56%</td>
<td>12%</td>
</tr>
<tr>
<td>Complete Response Rate</td>
<td>16%</td>
<td>2%</td>
</tr>
<tr>
<td>Median Duration of Response</td>
<td>15 months</td>
<td>18 months</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>67%</td>
<td>6%</td>
</tr>
</tbody>
</table>

MOGAMULIZUMAB:
MONOCLONAL ANTIBODY TARGETING THE CHEMOKINE RECEPTOR CCR4
CCR4 IS EXPRESSED ON MYCOSIS FUNGOIDES CELLS AND T REGULATORY CELLS

Mogamulizumab allows your immune system to better attack the cancer cells
Phase III Mavoric study

<table>
<thead>
<tr>
<th>Mogamulizumab 1mg/kg IV, q14 days</th>
<th>VS</th>
<th>Vorinostat 400mg po daily</th>
</tr>
</thead>
</table>

- 372 patients with CTCL randomized
 - Stage Ib-IVb
 - Median age 64 years
 - Median of 3 prior therapies

- Excluded
 - Large cell transformation
 - Patients with active autoimmune disease

Kim et al. Lancet Oncology 2018;19:1192-1204
PHASE III MAVORIC STUDY RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Mogamulizumab</th>
<th>Vorinostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Response Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Skin response</td>
<td>28%</td>
<td>5%</td>
</tr>
<tr>
<td>• Lymph node response</td>
<td>42%</td>
<td>16%</td>
</tr>
<tr>
<td>• Blood response</td>
<td>15%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>67%</td>
<td>18%</td>
</tr>
<tr>
<td>Median Duration of Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Skin</td>
<td>20 months</td>
<td>10.7 months</td>
</tr>
<tr>
<td>• Lymph node</td>
<td>15 months</td>
<td>NE</td>
</tr>
<tr>
<td>• Blood</td>
<td>25 months</td>
<td>NE</td>
</tr>
<tr>
<td>Median Time to Response</td>
<td>3.3 months</td>
<td>5.1 months</td>
</tr>
<tr>
<td>NE=Not evaluable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kim et al. Lancet Oncology 2018;19:1192-1204
MOGAMULIZUMAB SIDE EFFECTS

- Rash:
 - 25% of patients
 - Severe rash in 3.6%
- Infusion reaction while receiving drug:
 - Chills, nausea, fever, fast heart rate, headache, vomiting
 - 1/3 of patients; severe in 8%
 - Usually 1st cycle
- Autoimmune complications to thyroid, lungs, liver etc.
 - Severe in <5%

Kim et al. Lancet Oncology 2018;19:1192-1204
Patients:
- 24 patients with relapsed/refractory CTCL
- 63% had received ≥ 4 prior therapies

Results:
- ORR 38% (CR 4%)
- 6 of 9 responders had a 90% decrease in skin disease
- Sustained response in 8 of 9 responders

Side effects:
- Flare up of the skin disease
- Autoimmune issues (diarrhea, pneumonitis)

CLINICAL TRIAL AT UNC
CHIMERIC ANTIGEN RECEPTOR (CAR) T-CELLS

- Hybrid molecule:
 - Extracellular antigen-recognition site from an antibody
 - Intracellular signaling domain of T-cell receptor

- CAR binds antigen on surface of tumor cells -> T cell activation and killing of tumor cells

Slide courtesy of Natalie Grover, MD
Patient’s T cell (immune fighting cell)

Protein targeting CD30 marker
(CD30 is what brentuximab vedotin targets)

Slide courtesy of Natalie Grover, MD
LCCC 1606: HOW TO OPTIMIZE BENEFIT OF CAR-T CELLS FOR CD30+ LYMPHOMA?

- CD30.CART enhanced with expression of CCR4 (same target as mogamulizumab)

- Hypothesis: Improved targeting of CAR-CD30 modified T cells to tumor site, leading to increased anti-lymphoma activity

Slide courtesy of Natalie Grover, MD
1. Collect blood
Blood is collected from the study participant.

2. Activate T cells
The T cells are isolated from the blood and activated using anti-CD3 and CD28 antibodies.

3. Express CAR
Viral vector
A virus is used to transfer DNA information into the T cells that instructs the T cells to produce a chimeric antigen receptor (CAR) on its surface. The result is a CAR-T cell that is designed to recognize and attack cancer cells.

4. Expand T cells
Researchers use growth factors to spur the CAR-T cells to multiply by the tens of thousands.

5. Testing and freezing
Once there is a sufficient number of CAR-T cells, they are tested for functionality, confirmed to be sterile and frozen until needed.

6. Infusion
The CAR-T cells are thawed and administered to the study participant via an IV infusion. Monitoring for safety and response is performed at specific intervals.

UNC Lineberger Comprehensive Cancer Center
PROSPECTIVE DATA IN CTCL

<table>
<thead>
<tr>
<th></th>
<th>ORR</th>
<th>CR</th>
<th>Median DOR. months</th>
<th>Pruritus Improved</th>
<th>FDA approved for CTCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>64%</td>
<td>9%</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>HDAC-I (romidepsin, vorinostat)</td>
<td>14-34%</td>
<td>0-10%</td>
<td>1.4-15</td>
<td>Y</td>
<td>Yes</td>
</tr>
<tr>
<td>Alemtuzumab*</td>
<td>38-84%</td>
<td>0-47%</td>
<td>2.2-6</td>
<td>Y</td>
<td>No</td>
</tr>
<tr>
<td>Brentuximab vedotin**</td>
<td>67-73%</td>
<td>16-35%</td>
<td>7.4-15</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Liposomal Doxorubicin</td>
<td>41%</td>
<td>6%</td>
<td>6</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Pralatrexate</td>
<td>41%</td>
<td>6%</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Mogamulizumab</td>
<td>28%</td>
<td>NR</td>
<td>14</td>
<td>NR</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NR=Not reported; CR=complete response; ORR=overall response rate; DOR=duration of response
*Most benefit seen in sezary syndrome/erythoderma
** Responses seen even with very low level of CD30 expression
HDAC-I- Histone deacetylase inhibitor

Most commonly: indolent, chronic disease

Focus of treatment:
- Improve symptoms
- Minimize toxicity
- Improve and maintain quality of life

Management is very individualized and involves input from dermatology and oncology and radiation oncology

CTCL - Take home messages
THANK YOU FOR YOUR ATTENTION